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ABSTRACT

This paper presents an overview of the recent ad-

vances in system identification for modal testing and

control of large flexible structures. Several techniques

are discussed including the Observer/Kalman Filter
Identification, the Observer/Controller Identification

and the State-Space System Identification in the Fre-

quency Domain. The System/Observer/Controller

Toolbox developed at NASA Langley Research Center

is used to show the applications of these techniques to

real aerospace structures such as the Hubble spacecraft

telescope and the active flexible aircraft wing.

INTRODUCTION

Since the mid-sixties the field of system identifi-

cation has been an important discipline with the au-
tomatic control area. 1 One reason is the requirement

that mathematical models within a specified accuracy
must be used to apply modern control methods. An-

other reason is the availability of digital computers
which can perform complex computations. Since then,

there are a multitude of approaches, perspectives and

techniques to be used for system identification. Most

techniques are found very useful for application to the

electrical engineeering problems. Nevertheless, most

techniques do have difficulties in application to other

areas such as the large aerospace structures which can

only be accurately described by a large-size model with

the dimension in the order of hundreds. In addition,
most large aerospace structures possess significant un-

certainties and nonlinearities which make system iden-

tification even more difficult, if not impossible.

In aerospace structures, there are basically three

types of identification work, namely modal parameter
identification, structural-model parameter identifica-

tion and control-model identification. All three types

of identification are important technology areas and
they have different principal objectives and histories of

development. The modal parameter identification and

structural-model parameter identification are used in

structural engineering whereas the control-model iden-
tification is used in control of flexible structures.

In this paper, we will focus on the modal parame-
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ter identification and the control-model identification.

Modal parameter identification, which is generally re-

ferred to as modal testing in the field of structures,

means the process of measuring signals produced by

a structure and identifying modal parameters (i.e.,

damping, frequencies, mode shapes and modal partic-
ipation factors). System identification in the field of

controls means the process of measuring signals pro-
duced by a system and building a control-model to

represent the system for control design. If the identi-

fied model is a linear model in state space representa-

tion,' the eigensolution of the model provides eigenval-

ues and eigenvectors which in turn determine modal

parameters for structures. Correlation between the

fields of modal testing and system identification for
controls is evident.

In the past decade, many system identification

techniques were developed and/or applied to identify

a state space model for modal parameter identifica-

tion of large flexible structures. The identified state

space model is also used in controller design. Many
satisfactory results were reported in the literature. 2,a

Most techniques are based on sampled pulse or im-

pulse system response histories which are known as

Markov parameters. The usual practice uses the Fast

Fourier Transforms (FFT) of the inputs and measured

outputs to compute the sampled pulse response his-
tories. The discrete nature of the FFT causes one to

obtain pulse response rather than impulse response,

and a somewhat rich input is required to prevent nu-

merical ill-cSnditioning in the computation. Another

approach is to solve directly in the time domain for the

Markov parameters from the input and output data.
The drawbacks of this method include the need to in-

vert an input matrix which necessarily becomes par-
ticularly large for lightly damped systems. 4

Recently, a method has been developed to com-

pute the Markov parameters of a linear system, which
are the same as its pulse response history. 5-12 The

method, referred to as the Observer/Kalman Filter
Identification algorithm (OK[D) is formulated entirely

in the time domain, and is capable of handling general

response data. A fundamental difference in this ap-
proach is the introduction of an observer in the iden-

tification equations. This makes identification possi-
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ble for not only theopen-loopsystem,but alsoan
associatedobserverwhichcanbe laterusedin con-
trollerdesign.Dependingonthenoisecharacteristics,
themethodidentifiesadeadbeatobserverwhichis the
fastestpossibleobserverin theabsenceofnoises,ora
Kalmanfilterwhichisanoptimalobserverin thepres-
enceofnoises,oranyotherobserverwithuserspecified
poles.Themethodhasbeensuccessfullyappliedto
identificationofrealsystems,includingalinearmodel
of thespaceshuttleremotemanipulatorbasedona
non-linearsimulationcode,xaandthe Hubblespace
telescope.14

An important extensionof the aboveOKID
methodis the identificationof closed-loopsystems.
Thereareseveralinstanceswhensucha needarises.
Thesystemmaybeoperatingin closed-loopandonly
closed-loopdata is availablefor identification.An
open-loopmodelof the systemmaybe requiredto
be identifiedfromclosed-loopdata for thepurpose
of structuralanalysisor controllerre-design.Certain
systemssuchasanaircraftunderthefluttercondi-
tionareinherentlyunstable.Forsuchsystems,it may
notbedesirableorevenpossibletoremovetheexisting
feedbackcontrolsystemto performopen-loopidentifi-
cation.Forthecasewheretheexistingcontrollerdy-
namicsisassumedtobeunknown,amethodwasdevel-
opedinRef.15,referredtoastheObserver/Controller
Identificationalgorithm(OCID),to identifyanopen-
loopmodel,andaneffectiveobserver/controllercom-
bination.Thecasewheretheclosed-loopsystemdoes
notpossessa full statefeedbackstructure,but rather
acontrollerwithknownoutputfeedbackdynamics,is
treatedin a separatepaper.TM The mathematical for-
mulations for the two cases are entirely different since

the former case deals with known feedback control sig-

nals, whereas the latter case deals with known feed-

back controller dynamics.

It has been found that the OKID method can ef-

fectively identify the state space models using time

domain input-output data. However, there are cases

in which frequency response data, rather than time

histories, are available. This is often the case with the

advent of sophisticated spectrum analyzers and asso-
ciated automatic test equipment. Therefore, the tech-

nique of obtaining state space models from frequency

response data is of practical interest. Classically, the
Inverse Discrete Fourier Transform method (IDFT) is

used to transform the frequency response data to time

domain data, that is, to transform the frequency re-

sponse function (FRF) of the system to its pulse re-

sponse. The pulse response of discrete-time systems is
also known as the Markov parameters. The disadvan-

tage of this approach is that the Markov parameter se-
quence obtained is distorted by time-aliasing effects. 17

Recently, a method called the State Space Frequency

Domain (SSFD) identification algorithm TM has been

developed. This method can estimate Markov pa-
rameters from the FRF without windowing distortion

and an arbitrary frequency weighting can be intro-

duced to shape the estimation error. The method uses

a rational matrix description (the ratio of a matrix

polynomial and a monic scalar polynomial denomina-

tor) to curve-fit the frequency data and obtains the

Markov parameters from this equation. In obtaining

the state space models from the Markov parameters,
the Eigensystem Realization Algorithm (ERA), m or

its variant ERA/DC, 2° is used. The disadvantage of

this method is that the curve-fitting problem must ei-

ther be solved by non-linear optimization techniques

or by linear approximate algorithms requiring several

iterations TM. Using the same idea as derived for the

OKID, a novel method developed in Ref. 21 proposes

a simple yet effective way of curve-fitting the FRF data
and of constructing the Markov parameters. Instead

of using a rational matrix function, this method uses a
matrix-fraction for the curve-fitting. Thus the curve-

fitting is reformulated as a linear problem which can

be solved by the ordinary least-squares method in one

step; that is, no iteration is required. The method
can match the frequency response data perfectly if the

FRF is accurate in ideal cases, and will seek an optimal

match if noise and/or distortion are involved in the

data. This new approach retains all the advantages
associated with the SSFD while avoiding the iterative,

approximate curve-fitting procedures.

The objective of this paper is to present an
overview of the recent advances in system identifica-

tion for modal testing and control of large structures.

We focus on the Observer/Kalman Filter Identification

(OKID)S- 11,12,22,23, the Observer/Controller Identifi-

cation (OCID) is'is and the State Space System Iden-
tification in the Frequency Domain. ls'2° Applications

to the real aerospace structures will be shown includ-

ing the Hubble spacecraft telescope TM and the active
flexible aircraft wing is.

OBSERVER/KALMAN FILTER IDENTIFI-
CATION

There are basically two ways to stochastically char-

acterize system uncertainties including process and

measurement noises (see Fig. 1). One way is to de-

scribe the input and output uncertainties directly in
terms of their covariances. Another way is to spec-

ify the Kalman filter equation with its steady state
Kalman gain, which is a function of the input and out-

put uncertainty covariances. In the OKID, an ob-
server is identified to characterize the input and output

uncertainties. If the data length is sufficiently long,

and the number of identified observer Markov parame-

ters (pulse response time histories) is sufficiently large,
then the identified observer of the system approaches

the Kalman filter.
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Figure 1: Characterization of system uncertainties

The OKID has two ways of processing the input
and output data for system identification. One is
the forward-in-time and the other is the backward-in-

time as shown in Fig. 2. The forward-in-time means

Ililr- OKID Forward-in-time

0.1 . , .

-0.1
0 50 100

Time (sec)

liP' OKID Backward-in-time

Figure 2: OKID forward and backward

that the current output measurement can be fully es-

timated by the previous inputs and outputs, and is

commonly used for the system identification. If one

reverses time in the model to be identified, _4,25 what

were damped true system modes become undamped

true system modes, growing as the reversed time in-

creases. Physically, it implies that the current output

measurement can be fully estimated by the future in-
puts and outputs. On the other hand, the noise modes
in the forward and backward identification still main-

tain the property that they are stable. This is intu-

itively reasonable. If the data set is sufficiently long, an
unstable noise mode would predict noise contributions

to the pulse response data that grow unbounded as the

time step in the data set increases. This is inconsistent

with the expected contribution of noise in data. There-

fore, the backward identification has the advantage of

shifting from positive damping to negative damping

of the true system modes to distinguish these modes
from noise modes. Real experiences have shown that

the backward identification may fail to indicate cer-

tain system modes in experimental data, perhaps due
to the unmatched uncertainty levels in forward and

backward identification.

Given a set of experimental input and output data,

the identification algorithm (see Fig. 3) proceeds as
follows:

I Input and Output Time Histories !

!
I Observer Markov I

Step 1 IlilP_ [ Parameters I

I

I System Markov
Step2 II1_- [ Parameters I I Observer GainIMarkov Parameters I|

I I

I System Matrices A, B, C, D, I

Step 3 Ilqlw- iObserve r Gain Matrix G I

f
I Modal Pararneterll

Step 4 BElt- I Identification II

Figure 3: Flow Chart for the OKID

1) Compute observer Markov parameters.

2) Recover the combined system and observer gain
pulse response samples from the identified ob-

server Markov parameters.

3) Realize a state space model of the system and the
corresponding observer gain from the recovered

pulse response samples using ERA or ERA/DC.

4) Find the eigensolution of the realized state

matrix and transform the realized model to

modal coordinates for modal parameter identi-

fication. The modal parameters include frequen-

cies, dampings, and mode shapes at the sensor
locations.

To demonstrate the identification procedure using
real experimental data, the flight data from the Hub-

ble Space Telescope shown in Fig. 4 is used. There are

six gyros located on the Optical Telescope Assembly
(OTA) and four torque wheels located on the Space-

craft Subsystem Module (SSM). The OTA is fixed in-

side the SSM. The gyros are used mainly to measure
the motion of the primary mirror. Data from four out

of the six gyros are recorded at a time. The mea-

surement resolution is 0.005 aresec/sec, which implies
that the gyro data are not adequate because the re-

quirement is 0.007 arcsec pointing. The angular rates,

which are measured along the four gyro directions, are

combined and transformed using least-squares to re-
cover the three rates in vehicle coordinates. Least-

squares is used to smooth the poor resolution of the

data. The input commands are given in terms of an-
gular acceleration in the three rotational vehicle coor-

dinates and then projected on the four torque wheel
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Figure 4: Hubble Spacecraft Telescope

axes to excite the telescope mirror and the spacecraft.

The data were sampled at 40 Hz. Pulses combined

with sine-sweeping in the middle of an excitation pe-

riod (50.975 sec) were used as input commands to the

torque wheels. The excitation period was repeated

six times for a total of approximately 12,000 samples

taken for each experiment. The experiment was re-

peated three times for the other two vehicle coordi-

nates. As a result, there were three inputs and four

outputs for a total of three sets of 12,000 input sam-

pies and twelve sets of 12,000 output samples to be

used for identification of vibration parameters.

The usual practice of modal parameter identifica-

tion uses the Fast Fourier Transforms (FFT) of the

inputs and measured outputs to compute the pulse

response sequence (system Markov parameters). In

contrast, the OKID uses an asymptotically stable ob-

server to form a stable state space discrete model for

the system to be identified. The primary purpose of

introducing an observer is to compress the data and

improve system identification results in practice.

The first step is to compute the observer Markov

parameters. As shown in Fig. 5, the input and output

time histories are several orders longer than the ob-

server pulse response sequence (observer Markov pa-

rameters). For illustration, only the input and output

time histories from the first vehicle axis are shown.

The modal parameters which are excitable by the in-

puts and measurable by the output sensors are embed-

ded in the identified observer Markov parameters.

The second step is to compute system pulse re-

sponses (system Markov parameters) and observer

gain pulse responses (observer gain Markov parame-

ters). From the identified observer Markov parame-

ters, the system Markov parameters and the observer

gain Markov parameters can be easily computed. The

results for the first vehicle axis, V1, are graphically

21o' Inpul Sxcltnllon
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Figure 5: Computation of observer Markov parameters

shown in Fig. 6. Although the number of identified ob-
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Figure 6: Computation of system and observer gain

Markov parameters

server Markov parameters is finite and generally very

small, the number of system Markov parameters can

be as large as desired. Note that the maximum number

of independent system Markov parameters is equal to

the number of identified observer Markov parameters.

To solve for more system Markov parameters than the

number of identified observer Markov parameters, sim-

ply set the extra observer Markov parameters to zero.

The third step as shown in Fig. 7 is to compute the

system matrices and the observer gain matrix. Knowl-

edge of the actual system Markov parameters and the

observer gain Markov parameters allows one to use the

ERA or ERA/DC to obtain a state space realization

of the system of interest. Modal parameters including

natural frequencies, damping ratios, and mode shapes

can then be found from the system matrices. The

identified observer gain is related to the steady state

Kalman filter gain which may be used to characterize

the system uncertainties and measurement noises.

The system order identified from ERA/DC, after

some singular values truncation, was chosen to be 30

for the realization of system matrices. Seven dominant

modes were identified as shown in Table 1. The Mode

SV in the table describes the singular value contribu-
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Figure 8: Comparison of predicted and estimated out-

put

Table 1: Identified modal parameters for the Hubble

Space Telescope

Mode
No.

1 0.147

2 0.155

3 0.169

4 0.633

5 1.273

6 2.433

7 2.822

FrequencY(Hz) Daunting Modesv

55.6

58.4

67.4

57.3

4.06

5.23

6.33

0.76

0.98

1.00

0.68

0.37

0.02

0.01

tion of each individual mode to the system Markov
parameters. It has been normalized relative to the

maximum singular value. The first three modes are

attitude modes. The 0.633 Hz mode is believed to

be an in-plane bending mode of the solar array, the

1.273 Hz mode is a coupled solar and membrane mode,

and the 2.433 Hz mode is the first mode of the primary
deployment mechanism with the solar array housing

attached. The identified dampings are higher than ex-
pected because there is an attitude control for maneu-

vering during testing, as well as inherent mechanical
friction of tile solar array mechanism.

The left figure in Fig. 8 shows the excitation input

signal including pulse combined with sine-sweeping

components in the middle of an excitation period for
the first vehicle axis. The right figures in Fig. 8 show
overlapping 50 seconds of the reconstruction from the

identified system models, and the test data for the first

vehicle axis. The upper right corner in Fig. 8 shows the

predicted output in comparison with the real output

data. The lower right corner in Fig. 8 shows the esti-

mated output in comparison with the real output data.
The predicted output is the output reconstructed from

the identified model only whereas the estimated out-

put is the output reconstructed from the identified ob-

server. There are visible differences in the predicted
and estimated outputs. Comparison of the observer

output with the measured response shows extremely
good agreement, indicating that the observer is cor-

recting for the system uncertainties including nonlin-

earities. The covariance of the estimated output resid-

uals is about three orders less than the predicted out-

put residuals. Similar results of the predicted and esti-
mated outputs were obtained for the second and third

vehicle axes, and thus are not shown in this example.

Figure 9 shows the comparison of the forward and

backward identification results. The left figure shows

ZlO s . In1_,11 .
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-z lO_1 . , . I
O ZS SO
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0.1 Forward ID
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-0.1

0 Timez_sec) 50
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Figure 9: Comparison of OKID-forward and OKID-
backward results

the excitation input signal including pulse combined

with sine-sweeping components in the middle of an

excitation period (50.975 sec). The figures on the
right hand side show overlapping 50 seconds of the

reconstruction from the identified forward and back-

ward system models, and the test data for the first
vehicle axis. There are some visible differences in the

backward identification between test and reconstruc-

tion but overall the map from the input to the output
is reasonably well. The forward identification is some-

what better than the backward identification in damp-
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ing estimation. The damping ratio estimated from the

backward approach appears to be a little low. It is im-

portant that the system model be accurate because it

is this part that is used as a model for control design.

OBSERVER/CONTROLLER IDENTIFICA-

TION

This section presents a technique that identifies a

control system operating under closed-loop conditions

with an existing feedback controller, which may or may
not include feedback dynamics. The controller and

the open-loop system dynamics are assumed to be un-
known. The closed-loop system is excited by a known

excitation signal, and the closed-loop system output

responses and the feedback signal are measured. A
schematic diagram of the existing or actual closed-loop

system is given in Fig. 10 which shows the measured

y(k)
r(k) 3, Closed-loop

'" Excitant[ SYSTEM ] Resinse -

+y t (A,B,C,D)
2. Feedback I

Sk_na
uf(k)_[CONTROLLER L

__ witho_without
dynamics J

Figure 10: Existing (Actual) control system

eters for an observer, the open-loop system, and the

controller.

The OCID here means the Observer/Controller

Identification. Given a set of excitation signal, feed-

back signal, and closed-loop response data, the iden-
tification algorithm (see Fig. 12) proceeds as follows.

D

st.p s IIIIIP- .o-,-_,,-=O
Controller Gain Matrix F

Figure 12: Flow chart for the OCID

1) Compute observer/controller Markov parame-
ters.

quantities, and the open-loop system in state-space
representation given by the matrices A, B,C, D. An

algorithm is developed to identify the open-loop sys-
tem, an observer gain, and the existing controller gain
matrices from closed-loop test data which include the

time histories of the excitation signal, the resulting

closed-loop response, and the feedback control signal.

The technique assumes the identified controller to be of

a full state feedback type. A schematic diagram of the
identified or effective closed-loop system is shown in

Fig. 11, where A, B, C, D again represent the identified
y(k)

r(k) 3. Closed-loop

1. Excitation÷uf(,) '!__ ContrOl=_[SYSTEM}I_._IObserver _nse ..

I -I
2. Feedb

Signal /

L--- I gain G
gain F _ |

• FindA,B,C,D,G,andF fromdataat pointsI, 2, and3

Figure 11: Identified (Effective) control system

open-loop system; G and F represent the identified ob-
server and controller gains, respectively. The method

first identifies the Markov parameters of a closed-loop

observer, which in turn produce the Markov param-

2)

3)

4)

Recover system, observer gain, and controller

Markov parameters.

Realize a state space model of the system, the

corresponding observer and controller gains from
the recovered sequence of the system and ob-

server gain Markov parameters by using ERA

or ERA/DC.

Find the eigensolution of the realized state

matrix and transform the realized model to

modal coordinates for modal parameter identi-
fication. The modal parameters include frequen-

cies, dampings, and mode shapes at the sensor
locations.

The OCID method is illustrated by using actual

aircraft flutter test data. 26 Experimental data was ob-

tained from wind tunnel tests of an aeroelastic model

with active flutter control operating (see Fig. 13). The

model, known as the Active Flexible Wing (AFW), has

a digital controller which suppresses flutter by prop-

erly phased commands to actuators of eight control
surfaces on the wing leading and trailing edge surfaces.

During flutter suppression control law testing, acceler-
ation signals from sensors distributed on the model
were first filtered for anti-aliasing and then quantized
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Figure 13: Active flexible wing

at a 200Hz sample rate. The quantized signals ob-
tained from both sides of the model were then sym-

metrized in pairs. These symmetrized signals became

the inputs to the symmetric and antisymmetric flut-

ter suppression control laws and also the source of

the closed-loop response time histories to be used for

the identification process. Output signals of the feed-

back control laws and independent input excitation to

the wing provided the remaining time histories neces-

sary for identification of the closed-loop control sys-

tem. During tests, each of the actuator inputs was

excited individually by adding the excitation signal to
the feedback control output signal. This procedure al-

lowed the generation of all the responses necessary to

identify the multi-input/output control system. The

excitation signals themselves were either logarithmic

sine sweeps or so-called pseudo-random noise. The

excitation signal, the resultant closed-loop response
time histories, and the feedback control signal were

used with the OCID technique to identify all of the

elements of the AFW model including the open-loop

system matrices, an observer gain, and the existing

controller gains. The flutter mode is then identified

by solving the eigenvalues of the open-loop state ma-
trix.

Seven sets of experimental data were used corre-

sponding to different dynamic pressure conditions, 175

pounds per square foot (psf), 200 psf, 230 psf, 240 psf,

250 psf, 260 psf and 280 psf respectively. Results for

the 260 psf condition are shown in the following unless

otherwise specified. The number of data points used in

this case is 600, with a sampling interval of 0.005 sec.
apart (200 Hz sampling rate). The actual time his-
tories used in the identification and the identification

results are shown in Fig. 14, which are discussed in
more details below.

From the data histories shown in Fig. 14 for the

first 2 seconds, 30 observer/controller Markov param-

eters are computed. The identified observer/controller

Markov parameters are shown on the middle of Fig. 14
for a duration of 0.15 sec. There are four curves in this

plot. Using the identified observer/controller Markov

parameters, the system, observer gain, controller gain,

Glxmvw_,_lrdlr

PItWneWl

i

o a+ o2

,r+l k,. _
Obmnn'_ _ kkm4Dr

i_ STATE _I_C_IE

[ IICOEt A, II, C, D

_F

Figure 14: Identified Markov parameters

and observer/controller gain Markov parameters are
computed, which are shown on the right hand side of

Fig. 14. Note that these time histories are not lim-

ited to the 0.15 sec. duration. In fact, the system,

observer gain, controller gain, and observer/controller

gain Markov parameters can be computed for any du-

ration as desired. The pulse responses increase in am-

plitudes with time, revealing open-loop instability.

Using the computed Markov parameters, a state

space model relating the system, the controller gain,
and the observer gain are then computed. The system

Markov parameters are simply its pulse response sam-

pies. The flutter mode is then identified by solving the

eigenvalues of the open-loop state matrix.

Figure 15 shows that the identified flutter mode

I0 9.3

Flutter

Mode

Damping

Ratio(_)
o

_ l_amping -,L. Freq.
+t

5 _'v" "*"

_,, _.., I I_,,

150 2OO 25O

AerodynamicPre_ure(PSF)

8,8 Mode

Freq+
OCz)

8.3

7.8

3O0

Figure 15: Identified Markov parameters

for the 260 psf condition has an open-loop frequency

of 8.78 Hz and 3.34% negative damping, implying

open-loop instability. This example illustrates the case
where open-loop identification may not be possible

or practical for such a system. Similar analysis per-

formed on the six remaing sets of data revealed that

the identified flutter mode for the 250 psf condition

has an open-loop frequency of 9.06 Hz and 0.26% neg-

ative damping, indicating marginal open-loop instabil-
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ity. The final 280 psf condition was identified to have

an open-loop frequency of 8.76 Hz and 5.73% negative

damping, indicating even greater open-loop instabil-

ity. Comparison of the identified with the analytical
results showed excellent agreement in frequencies and

damping, indicating a coalescing mode switch in fre-

quency.
In general, a specific (or existing) observer is not

identifiable because the observer becomes ineffective

when the transient responses decay out and the er-
rors between the true states and the estimated states

become dominated by the system uncertainties and

measurement noises. Therefore, from given excitation

signals, feedback signals, and measurement data, one
identifies an effective observer determined by the sys-

tem uncertainties and measurement noises, instead of

the specific observer. However, this does not influ-
ence the identification of the open-loop system and

the feedback controller gain. When the data length

is sufficiently long, and the number p is chosen to be

sufficiently large, then the identified observer tends to

a Kalman filter which may not be the observer given

by the controller designer. Also, numerical studies in-
dicate that this technique particularly works well for

unstable systems because the signal to noise ratio for

an unstable mode is generally higher than that for a
stable mode.

FREQUENCY-DOMAIN SYSTEM IDENTI-

FICATION

The objectiveof frequencydomain statespace sys-

tem identificationis to identifystate space models

from the given frequencyresponse data--the frequency

response functions(FRF). The transferfunctionof a

multi-input and multi-output linearsystem has left

and rightmatrix-fractiondescriptions.From the left

matrix-fractiondescription(LMFD), one can derivea

simple observable canonical form, whereas from the

rightmatrix-fractiondescription(RMFD) one can de-

rive a simple controllablecanonical form, which is
shown as follows.Neither observablenor controllable

canonical form isa minimum realization.The min-

imum realizationmeans a model with the smallest

statespace dimensions among allrealizablesystems

that have the same input-outputrelations.Insteadof

computing canonical-formrealizations,one may com-

pute the system Markov parameters and then obtain

a minimum statespace realizationusing ERA.

The computational steps for the matrix-fraction

descriptionmethods are shown in Fig. 16 and sum-

marized as follows:

1. Determine frequency response functions.

2. Curve-fit the frequency response function us-

ing the left or right matrix-fraction description
method.

ERA 4.

Realization

Figure 16: Computational Steps for left of right
matrix-fraction description method.

3a. Construct a canonical-form realization. If the

left matrix-fraction description method is used,
an observable canonical form will be obtained.

If the right matrix-fraction description method

is used, a controllable canonical form will be ob-
tained.

3b. Compute system Markov parameters as many as
desired if a model with minimum order is to be

determined.

4. Determine a minimum order realization from the

computed system Markov parameters by using a
minimum realization technique such as ERA.

5. Find the eigensolution of the realized state
matrix and transform the realized model to

modal coordinates for modal parameter identi-

fication. The modal parameters include frequen-

cies, dampings, and mode shapes at the sensor
locations.

The left matrix-fraction description method is illus-

trated by using the structure shown in Fig. 17 which is
a NASA testbed 27 to study the controls and structures

interaction problem. The system has eight inputs and

8 Proportiomll and
BI-directional

Thrusters

e Servo (DC)
Acceierometers

Figure 17: A NASA large space structure testbed.

eight collocated outputs for control. The inputs are
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air thrusters and the outputs are accelerometers. The

locations of the input-output pairs are depicted in

Fig. 17. In this example, the structure was excited

using random input signals to four thrusters located
at positions 1, 2, 6, 7. The input and output sig-

nals were filtered using low-pass digital filters with the

range set to 78% of the Nyquist frequency (12.8 Hz)

to concentrate the energy in the low frequency range

below 10 Hz. A total of 2048 data points at a sam-

pling rate of 25.6 Hz from each sensor are used for
identification.

Sixteen FRF's from four input and output pairs lo-

cated at positions 1, 2, 6, 7 are simultaneously used to

identify a state space system model to represent the

testbed. The order of the matrix polynomial is set to
25, which is sufficient to match as many as 50 modes

(a system of dimension 100). A state space model is

obtained using ERA/DC with the system order as-
signed to 100. The reconstructed frequency response

data (dash lines) are compared with the experimental

data (solid lines) in Figs. 18 and 19.
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I00
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Frequency Response (Phase)

3 6 9 12
Freqency (Hz)

Figure 18: Comparison of the test (solid line) and re-
constructed (dash line) input- 1/output- 1 FRF's. The

reconstructed FRF is obtained using the identified sys-
tem matrices.

Figure 18 is the frequency response of output 1

with respect to input 1, representing a case of a strong

signal, while Fig. 19 is the frequency response of out-
put 2 with respect to input l, representing a case of

a weak signal. The signal is weak because sensor 2 is

orthogonal to input 1. Similar results are obtained for

other input/output pairs which are not shown. The
results show that the matching is better for the strong

signal cases. This is expected because the strong sig-

nal has a larger signal-to-noise ratio than the weaker

signal. The results for other input-output pairs are

Frequency Response
10 2 • . = • ,

!

Magnitude. t

0.01

0.001

0 3 6 9 12

Frequency (Hz)

200 Frequency Response (Phase)

100 " i - ! •

Angle o

(deg)

-!o0

-200

0 3 Freqen6cy (Hz) 9 12

Figure 19: Comparison of the test (solid line) and re-

constructed (dash line) input-i/output-2 FRF's. The
reconstructed FRF is obtained using the identified sys-
tem matrices.

similar and hence omitted.

CONCLUDING REMARKS

The field of system identification has expanded

continuously and extensively over two decades. This

growth is largely associated with corresponding im-

provements in computer capabilities. These increases
in computer capability have permitted more accu-

rate and complete testing and data analysis to occur.

Algorithms and approaches thought too extensive in

the past are now feasible. In particular, many im-

portant numerical tools have been developed includ-

ing the singular value decomposition which is an es-
sential tool in the derivation of system identification

methods. In this paper, an overview of several re-

cently developed techniques are presented including

the Observer/Kalman Filter Identification, the Ob-

server/Controller Identification, and the State-Space

System Identification in the Frequency Domain. These

techniques have been successfully applied to many

aerospace structures. However, complex, built-up
structures still pose a significant challenge to the best

ground-based methodology now available.
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